
Computational graphs, backpropagation and
the automatic gradient computation

Jan Vlk
Czech Technical University in Prague
Faculty of Electrical Engineering, Department of cybernetics

Autograd

Computational graph

1/12

a)

b)

c)

x = [1
3], w = [0.5

1.3]

x = [1
3], w = [0.5

−1.3]

x = [0.4
0.9], w = [−1.5

0.8]

Training weights

2/12

x = [
0.7
0.4
1.2], w = [

0.3
0.3
0.3], y = 1

Individual task

3/12

You are given the following equation

with

a) Draw a computational graph
b) Compute feedforward pass

c) Calculate gradient

d) Calculate MSE loss, add to graph

e) Update weights with

y = sin (w⊤x) − b

x = [2
1], w = [

π
2
π], b = 0, ̂y = 2

∂y
∂w

α = 0.5

Vector-Jacobian product

4/12

a) Implementation of , where is

the upstream gradient

b) Derive the

vjpdiag (v, x) v

∂ℒ
∂x

Under the hood of autograd library

Backpropagation in code

Activation functions

6/12

Sigmoid ReLU Tanh

f(x) =
1

1 + e−x
f(x) = max(0, x) f(x) =

1 − e−2x

1 + e−2x

∂f(x)
∂x

=
e−x

(e−x + 1)2
∂f(x)
∂x

=
4e2x

(e2x + 1)2

∂f(x)
∂x

= 1, x ≥ 0
= 0, x < 0

Logistic loss

7/12

f(x, y) = log (1 + e−xy) ∂f(x, y)
∂x

= −
y

1 + exy

Creating your own library

HW2 Autograd

For next week

Matrix multiplication

9/12

Mathematical derivatives

Backward pass in code (using vjp)

x11 ⋯ x1n
⋮ ⋮

xm1 ⋯ xmn

×
y11 ⋯ y1m
⋮ ⋮

yn1 ⋯ ynm

=
x11 ⋅ y11 + ⋯ + x1n ⋅ yn1 ⋯ x11 ⋅ y1m + ⋯ + x1n ⋅ ynm

⋮ ⋮
xm1 ⋅ y11 + ⋯ + xmn ⋅ yn1 ⋯ xm1 ⋅ y1m + ⋯ + xmn ⋅ ynm

∂f
∂Y

= X⊤ ∂f
∂X

= Y⊤

vjpf (v, X) = v ×
∂f
∂X

= v × Y⊤

vjpf (v, Y) =
∂f
∂Y

× v = X⊤ × v

https://math.stackexchange.com/questions/1846339/why-does-the-gradient-of-matrix-product-ab-w-r-t-a-equal-bt

https://math.stackexchange.com/questions/1846339/why-does-the-gradient-of-matrix-product-ab-w-r-t-a-equal-bt

Reqularization loss

10/12

 f(x, y) = y ⋅
n

∑
i=1

x2
i

x ∈ ℝn, y ∈ ℝ

∂f(x, y)
∂xi

= 2 ⋅ y ⋅ xi

Cross-entropy loss

11/12

f(x, y) = −
1
n

n

∑
i=1

[[yi = ci]]log(xi)
∂f(x, y)

∂x
= −

1
n

n

∑
i=1

[[yi = ci]]
1
xi

 is a vector with class probabilities for input

 is a vector of correct class predictions for input
 is a vector of all possible classes

 is an Iverson Bracket

x ∈ ℝn

y ∈ ℝn

c ∈ ℝn

[[⋅]]

https://en.wikipedia.org/wiki/Iverson_bracket

Cross-entropy loss with softmax

f(x, y) = − ∑
i

yi log (ai), ai = h (xi) =
exi

∑j exj

∂f
∂xi

= ∑
j

∂f
∂aj

⋅
∂aj

∂xi

∂f
∂xi

= ∑
j≠i

∂f
∂aj

⋅
∂aj

∂xi
+

∂f
∂ai

⋅
∂ai

∂xi

∂f
∂xi

= ∑
j≠i

yj ⋅ ai − yi (1 − ai) = ∑
j≠i

yj ⋅ ai + yi ⋅ ai − yi

∂f
∂xi

= ∑
j

yj ⋅ ai − yi = ai ∑
j

yj − yi

∂f
∂xi

= ai − yi

∂f
∂ai

=
∂ (−∑j yj ⋅ log (aj))

∂ai
=

∂ (−yi ⋅ log (ai))
∂ai

= −
yi

ai

∂ai

∂xi
=

∂ (exi

∑j exj)
∂xi

=
exi

∑j exj

exj

exj
−

exi

∑j exj
= ai (1 − ai)

∂f
∂aj

=
∂ (−∑k yk ⋅ log(ak))

∂aj
= −

yj

aj

∂aj

∂xi
=

∂ (exj

∑k exk)
∂xi

=
exj

∑k exk

∂exj

∂xi

exj
−

∂∑k exk

∂xi

∑k exk
=

exj

∑k exk (0 −
exi

∑k exk) = − aj ⋅ ai

With proof, do not learn the proof just the result is enough

12/12https://towardsdatascience.com/deriving-backpropagation-with-cross-entropy-loss-d24811edeaf9

https://towardsdatascience.com/deriving-backpropagation-with-cross-entropy-loss-d24811edeaf9

